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first shock for thinner samples (no information is 

given about the thickness), and explain that it is due 

to relaxation processes. 

4. Minshall observed, by a pin technique, decay of the 

first shock over a distance of 5 cm (.8 cm - 5.8 cm) (13). 

No estimation of transformation time is given, nor is 

the explanation of the decay. However, if we assume 

this decay to be due to the relaxation, the order of 

relaxation time must be about 5-10 ~sec. 

All of the above reports agree about the existence of 

the transition, but as far as the relaxation time is concerned, 

they make no suggestion of a particular value to be used in the 

calculation. 

In numerical procedures we can use any relaxation time 

to study the effect of phase change on shock wave propagation, 

but we made an arbitrary choice of 1/3 ~sec for most of the 

calculations, based on consideration of the experiments by 

Novikov. In the study of the decaying precursor we used three 

relaxation times, .1, 1/3, and 1 ~sec. 

4.3 Equation of State of Iron 

The equation of state of the first phase is taken to be: 

where 

C 1 = specific heat at constant volume, phase 1, 
v assumed constant 

To = some temperature above which Cvl is constant, 
taken as room temperature here. 

(4.5) 
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a i = constants 

r = Gruneisen function, assumed constant 

This is a form of the Mie-Gruneisen equation used by Al'tshuler 

et al. (31). 

The coefficients a. can be determined from the poly-
~ 

nomial fits of the Hugoniot curve (1) or from static measure-

ments. However, for the case ' of iron there is no appreciable 

difference, below 200 Kb, between the isotherm and the Hugoniot 

centered at room temperature. For example, the temperature rise 

along the Hugoniot from 0 to 130 Kb is 200 e (28), which contrib­

utes only about 1.3 Kb to the total pressure. This difference 

is less than experimental error for static and shock measure­

ments in general (29). Therefore, we can substitute the Hugoniot 

as a room temperature isotherm in the equation of state. These 

and other equation of state parameters are given in Table VI. 

The values of a i listed in Table VI are determined from the 

least square fit of existing data below 130 Kb (32). Since 

errors in the experiments are larger than the thermal pressure, 

this will not give any inconsistency in the equation of state. 

When we speak of the temperature-independent equation of state, 

we mean the isotherm at To. 

Fig. 4.1 shows the isotherm at To in terms of relative 

volume. Bridgman's data at room temperature, extrapolated to 

high pressures, are drawn for comparison. The difference at 

high pressures is mainly due to inaccuracies encountered in 

extending Bridgman's data to such high pressures. Since the 


